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Abstract

The performance of 3D reconstruction using Neural Radiance
Fields (NeRFs) for outdoor phenotyping of plants is strongly
influenced by the imaging modality used for data collection.
We compare drone, handheld, and 360° ground robot datasets
collected over soybean and mungbean plots, and evaluate re-
construction quality using 2D metrics PSNR, SSIM, LPIPS,
and 3D geometric metrics precision, recall, and F1 score.
Drone imagery produced the highest geometric fidelity, hand-
held captures achieved the strongest 2D appearance quality,
and the 360° captures lagged in both metrics due to spherical
distortion and motion artifacts. The consistency of the drone-
based reconstructions highlights its suitability for field-scale
3D modeling and positions it as a practical foundation for fu-
ture phenotyping applications.

Code — https://idealab-isu.github.io/Drone-based-3D-
Reconstruction-of-Plants- AAAI26/

Datasets —
https://huggingface.co/datasets/ShambhaviJoshi/
Drone_based_3D_Reconstruction_of_Plants_AAAI26

Introduction

Three-dimensional (3D) reconstruction of plant structure
has become essential for precision agriculture and plant phe-
notyping. Quantifying morphological traits such as leaf area,
branching architecture, and canopy volume requires captur-
ing the spatial complexity of plants, information that con-
ventional two-dimensional imaging cannot adequately pro-
vide (Fiorani and Schurr 2013). Traditional 3D methods, in-
cluding manual measurements and stereo-based photogram-
metry, are labor-intensive and often inadequate for high-
throughput phenotyping workflows (Li et al. 2020, 2025).
Recent advances in neural scene representation have in-
troduced new possibilities for dense point cloud 3D re-
construction. Neural Radiance Fields (NeRF) (Mildenhall
et al. 2021), in particular, model volumetric radiance as a
continuous function of spatial position and viewing direc-
tion, enabling both photorealistic view synthesis and de-
tailed geometry recovery from multi-view images. Unlike
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traditional photogrammetric pipelines that rely on discrete
feature matching, NeRF captures subtle variations in re-
flectance and depth through learned volumetric representa-
tions, offering potential advantages for reconstructing com-
plex plant structures (Remondino et al. 2023).

Despite its success in controlled indoor environments and
computer graphics applications, applying NeRF to outdoor
agricultural settings presents distinct challenges (Hu et al.
2024; Arshad et al. 2024). Field environments introduce dy-
namic illumination, wind-induced plant motion, and com-
plex occlusions from overlapping foliage. Equally impor-
tant, the choice of imaging device, including sensor char-
acteristics, lens properties, and capture trajectory, funda-
mentally affects reconstruction quality (Choi, Park, and Lee
2024; Li et al. 2025). Understanding how different imaging
platforms influence NeRF performance under field condi-
tions is essential to develop practical, scalable reconstruc-
tion pipelines for agricultural research. Yet systematic com-
parisons of device-specific reconstruction fidelity in outdoor
settings remain limited.

Agricultural data acquisition employs multiple imaging
platforms, each offering distinct perspectives and trade-
offs. Aerial drones provide consistent orbit-based trajecto-
ries and canopy-level coverage suitable for plot-scale moni-
toring (Hunt et al. 2010; D’Odorico, Rulli, and Dell’ Angelo
2020). Handheld devices capture high-resolution, close-
range data with flexible viewpoints but limited spatial cov-
erage. Ground-based robots equipped with omnidirectional
cameras extend field coverage with low-angle perspectives
near the soil surface (Zhang and Kovacs 2012; Thenkabail
2019). While each platform has been evaluated indepen-
dently in agricultural contexts, systematic cross-platform
comparisons using NeRF reconstructions under matched
field conditions are lacking. Differences in sensor geome-
try, capture trajectory, and viewpoint distribution may sig-
nificantly affect reconstruction completeness and geometric
fidelity, yet these effects have not been quantified in con-
trolled comparative studies.

In this study, we present a comparative evaluation of
NeRF reconstructions across three imaging platforms op-
erating under similar field conditions: an aerial drone (DJI
Inspire 2 with Zenmuse X5S camera), a handheld de-
vice (iPhone 16 Pro), and a ground robot equipped with
a 360° camera (TerraSentia with Insta360 X4). We evalu-



ate reconstruction performance using complementary met-
rics that capture both geometric accuracy (Precision, Recall,
F1 score) and photometric fidelity (PSNR, SSIM, LPIPS).
This dual assessment is essential for agricultural phenotyp-
ing, where both structural measurements and visual realism
under novel viewpoints are required for trait extraction.

Our findings will provide practical guidance for selecting
appropriate imaging strategies in multi-device phenotyping
workflows and highlight platform-specific strengths and lim-
itations for field-scale 3D plant modeling.

Related Work

Since its introduction, Neural Radiance Fields (NeRF)
(Mildenhall et al. 2021) has established a new paradigm
for 3D reconstruction by learning continuous volumetric
representations from multi-view images. Subsequent devel-
opments have addressed key practical limitations: Instant-
NGP (Miiller et al. 2022) accelerated training through hash-
based encodings, Zip-NeRF (Barron et al. 2023) improved
anti-aliasing and detail preservation, and Nerfacto (Tancik
et al. 2023) integrated these advances into a stable, general-
purpose framework. To handle challenging outdoor condi-
tions with limited viewpoint diversity, recent work has ex-
plored hybrid approaches that incorporate LiDAR depth pri-
ors or geometric regularization (Niemeyer et al. 2022; Re-
mondino et al. 2023). These technical improvements have
enabled NeRF deployment in uncontrolled natural environ-
ments, including agricultural settings.

Three-dimensional imaging has become integral to crop
phenotyping, providing quantitative insights into canopy ar-
chitecture, leaf orientation, and biomass (Fiorani and Schurr
2013; Li et al. 2020). Early efforts relied on stereo vision
and structure-from-motion (SfM) pipelines, often combined
with UAV imagery or ground-based sensors (Tsouros, Bibi,
and Sarigiannidis 2019). These classical methods, however,
remain sensitive to variations in illumination, vegetation tex-
ture, and occlusion. The advent of NeRF has introduced new
opportunities for generating smooth, continuous 3D recon-
structions that better capture plant morphology (Hu et al.
2024; Arshad et al. 2024; Choi, Park, and Lee 2024). Stud-
ies have demonstrated NeRF’s capability for reconstructing
greenhouse crops, such as tomatoes (Choi, Park, and Lee
2024), and evaluating field-grown plants under natural light-
ing conditions (Arshad et al. 2024). Nevertheless, most ex-
isting agricultural NeRF studies focus on a single device or
capture configuration, which limits the comparative under-
standing of how hardware and acquisition geometry affect
reconstruction fidelity.

The impact of imaging modality on 3D reconstruction ac-
curacy has been widely discussed in photogrammetry and
remote sensing. Aerial drones provide high spatial cover-
age but suffer from perspective distortion and motion blur,
whereas handheld devices capture finer detail at a limited
scale (Hunt et al. 2010; Li et al. 2025). Ground-based robots
equipped with omnidirectional cameras enable low-angle
captures that reveal lower canopy structure but introduce
parallax and stitching artifacts. Few studies have systemati-
cally compared these modalities within the context of NeRF-
based reconstruction. Arshad et al. (2024) noted challenges

in field NeRF reconstructions caused by unstable orbits and
exposure variations. Li et al. (2025) emphasized the lack
of standardized datasets for evaluating cross-device NeRF
performance in outdoor scenes. Similarly, Remondino et al.
(2023) highlighted that camera calibration, optical distor-
tion, and trajectory stability strongly influence NeRF con-
vergence.

Despite these insights, a unified comparison across aerial,
handheld, and ground-based capture devices under shared
field conditions has not yet been performed. This study ad-
dresses that gap by evaluating orbit-based NeRF reconstruc-
tions using a standardized drone trajectory and co-located
handheld and 360° ground captures, providing quantitative
benchmarks for cross-device performance in agricultural
phenotyping.

Methods
Neural Radiance Fields (NeRFs)

Neural Radiance Fields (NeRF) represent scenes as continu-
ous volumetric functions that map 3D position and viewing
direction to emitted radiance, enabling photorealistic novel-
view synthesis from multi-view imagery (Mildenhall et al.
2021; Tancik et al. 2023). By jointly optimizing scene ap-
pearance and geometry, NeRF is capable of reconstructing
fine plant structures, even under varying outdoor illumina-
tion conditions. All reconstructions in this study were per-
formed using Nerfacto, the default NeRF pipeline in Nerfs-
tudio, which incorporates distortion correction, appearance
embeddings, and multi-resolution hash encoding for im-
proved stability in field conditions.

Field Preparation

The experiment involved two legume species: soybean
(Glycine max, cultivar:IAS19C3 and mungbean (Vigna radi-
ata (L.) Wilczek, cultivar:ISU Mung-G2, both released from
breeding programs at Iowa State University. These lines
were selected as representative examples of their respective
crops to evaluate the feasibility of multi-device 3D recon-
struction in typical agronomic conditions (Fig. 1 b,c). Plants
were established in a 3 x 3 grid with approximately 0.9 m
(3 ft) spacing between individuals and 1.8 m (6 ft) spacing
between the two crop sections to maintain clear separation
of canopies (Fig. 1 a). Seeds were sown in late June 2025,
and each hill was initially seeded with three to five seeds,
later thinned to one healthy plant per position to ensure uni-
form growth and visibility during imaging. One soybean
plant failed to emerge in the center of the soybean trial, and
one mungbean plant emerged poorly. It did not survive, re-
sulting in slightly incomplete grids that still preserved the
overall experimental layout.

Ground control points (GCPs) were distributed across the
plot to improve camera pose estimation and spatial align-
ment during reconstruction. The GCP set included multi-
ple ArUco markers and two black-and-white checkerboard
targets positioned around the field. These visual fiducials
provided fixed reference points visible across all imag-
ing modalities, helping maintain a consistent reconstruction
scale among datasets. Table 1 summarizes the three imaging
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Figure 1: Overview of the experimental setup and data acquisition workflow. (a) Aerial field layout showing mungbean (ISU
Mung-G2) and soybean (IAS19C3) plots with ArUco and checkerboard ground control markers. (b) Ground-level view of the
mungbean plants. (c) Ground-level view of the soybean plants. (d) Schematic illustration of capture trajectories for the drone,
ground robot, and handheld imaging. (¢) Handheld device: iPhone 16 Pro. (f) Aerial platform (Drone): DJI Inspire 2 drone with
Zenmuse X5S camera. (g) Ground robot: TerraSentia robot equipped with Insta360 X4.

platforms used in this study, including sensor specifications,
image resolution, number of images or frames, viewpoint
geometry, and capture distance for each modality.

Although the present experiment was conducted on a
small test area to validate workflow feasibility, the same
capture strategy can be scaled to larger field experiments.
The drone-based orbit approach, in particular, can be auto-
mated and standardized using flight-planning applications
such as DJI GS Pro , DroneDeploy, or UgCS, enabling
consistent data collection across multiple sites and facilitat-
ing the integration of NeRF-based reconstruction workflows
into broader phenotyping pipelines.

Handheld Dataset

The handheld images collected using the iPhone 16 Pro
served as the reference reconstruction for this experiment.
These images were captured at close range from multiple
controlled viewpoints, providing high-resolution and consis-
tent coverage of individual plants (Fig. 1d,e). As no ground-
truth LiDAR scans were available, the handheld NeRF mod-
els functioned as a practical pseudo—ground truth for evalu-
ating the relative fidelity of the drone and 360° reconstruc-
tions. The dataset required no additional preprocessing be-
yond standard COLMAP pose estimation prior to training
with Nerfacto (Schonberger et al. 2016; Schonberger and
Frahm 2016).

Drone Dataset

Aerial imagery was acquired using a DJI Inspire 2 (DJI
Technology Co., Shenzhen, China) equipped with a Zen-
muse X5S camera fitted with an Olympus M.Zuiko 45mm
/1.8 lens (Fig. 1f). The drone was manually piloted to per-
form a single circular orbit around each soybean and mung-
bean plot at a height of approximately 4.5 m above ground
level, with the camera tilted —20° relative to the horizontal
plane to capture oblique canopy views (Fig. 1d). All flights
were conducted during early-morning hours under diffuse
illumination to minimize wind movement and shadow vari-
ation, conditions shown to enhance image stability and re-
construction fidelity (Maes and Steppe 2019).

The aerial dataset consisted of approximately 300 im-
ages captured along a circular orbit around each plot. To
ensure reconstruction stability, all images were evaluated us-
ing an image-quality scoring script that ranked frames based
on sharpness, contrast, entropy, and edge density, retaining
only the highest-quality frames. The selected images pro-
vided consistent oblique viewpoints with sufficient overlap
for reliable pose estimation. These images were then used
directly for Nerfacto training without additional masking or
downsampling.

360° Ground Robot Dataset

Complementary ground-level imagery was obtained using a
TerraSentia field robot equipped with an Insta360 X4 cam-
era (Fig. 1g) (McGuire et al. 2021). The robot was man-



Platform Sensor Image Images Viewpoint Geometry Capture
Resolu- Distance
tion

Drone DIJI Inspire 2 with Zenmuse 4K ~300 images  Circular orbit with oblique ~6 m

X5S (45 mm) viewing angles

Handheld iPhone 16 Pro 12MP  ~100images Multi-angle close-range ~0.5-1 m

viewpoints

360° Insta360 X4 mounted on 5.7K ~300 images  Circular orbit using ~1m

Robot TerraSentia robot video equirectangular (360°)

projection

Table 1: Data collection platforms used to capture complementary viewpoints and spatial scales for field-scale NeRF-based 3D

plant reconstruction.

ually driven in orbit-like or square trajectories around each
plot, providing low-angle, omnidirectional views of the plant
canopies (Fig. 1d).

The recorded 360° video was processed by sampling 8-
14 equirectangular frames per orbit. To improve pose esti-
mation, the upper portion of each frame (dominated by sky
and horizon) was cropped to remove low-texture regions
that negatively affect structure-from-motion. The cropped
equirectangular images were then processed using the ap-
propriate camera model in COLMAP before Nerfacto.

Cross-Device Alignment

After NeRF training, dense point clouds were exported from
each model. To account for differences in spatial scale, view-
point, and field of view across the three imaging modalities,
all reconstructions were aligned and scaled in CloudCom-
pare using manual correspondences followed by iterative
closest point (ICP) refinement. This normalization enabled
direct comparison of structural fidelity across the platforms.

Results and Discussion

We evaluate reconstruction quality using both geometric
(3D) and appearance-based (2D) metrics. This combination
is necessary because agricultural NeRF reconstruction re-
quires both an accurate 3D structure and realistic image syn-
thesis under varying viewpoints.

3D Geometric Metrics

To quantify geometric fidelity, each reconstructed point
cloud is compared against the handheld iPhone model,
which serves as a pseudo—ground truth due to its high resolu-
tion and close-range capture. Following standard practice in
multi-view stereo and point cloud evaluation (Schops et al.
2017; Strecha et al. 2008; Guo et al. 2016), we compute Pre-
cision, Recall, and F1 score using a distance-threshold pro-
tocol.

Precision
Precision = [{p € Pprea : d(p, Pret) < 7}
|Ppred|
Recall
Recall = [{q € Prer : d(q, Pyrea) < T}

|Ref|

F1 score

Fl—2 Precision - Recall

" Precision + Recall

These metrics capture reconstruction correctness (preci-
sion), completeness (recall), and their balance (F1).

2D Appearance Metrics

To assess visual fidelity, we evaluate NeRF-rendered novel
views using the PSNR, SSIM, and LPIPS metrics. These
metrics capture pixel-level error, perceptual similarity, and
deep-feature similarity, respectively.

PSNR Following (Hore and Ziou 2010), Peak Signal-to-
Noise Ratio is defined as:

2
PSNR = 10log;, L
MSE(I, I)

Where L is the maximum pixel value.

SSIM  We use the original formulation of the Structural
Similarity Index from (Wang et al. 2004). Given two image
patches = and y, SSIM is defined as:

(2papty + C1)(204y + Ch)

SSIM(z,y) =
() (13 + py + Cr)(oz + 05 + Co)

where /1., 1, are mean intensities, 07, 0 are variances, o,

is covariance, and C, Cs are stability constants.

LPIPS LPIPS (Zhang et al. 2018) computes perceptual
similarity using deep feature embeddings from a pretrained
neural network. Given features f;(-) at layer /, LPIPS is:

LPIPS(z,y) = Y wi | fu(x) = f(y)l3
l

where w; are learned weights that align the metric with hu-
man perceptual judgments. Lower LPIPS values indicate
higher perceptual similarity.

Across both crops, the drone reconstructions achieved
higher geometric accuracy than the 360° camera, as re-
flected in the precision, recall, and F1 values in Table 2, with
the strongest performance observed in soybean (Fig. 2 e,g).
Soybean plants were larger and more visually distinctive
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Figure 2: Results from the reconstruction across devices. Handheld iPhone (a,d) Captures provide the highest detail, drone
imagery (b,e) preserves global structure, and 360° camera reconstructions (c,f) show increased noise and loss of canopy detail.
Close-up views of soybean (g) and mungbean (h) drone reconstructions highlight local canopy structure.

Dataset Prec. Rec. F1

Mung 0.389 0.580 0.466
Drone vs Handheld “g = ;498 0,670 0.571
360° vs Handheld Mung 0.221 0.305 0.256

Soy 0.395 0.468 0.428

Table 2: 3D geometric evaluation of drone and 360° recon-
structions relative to the iPhone reference model.

at the time of imaging, providing more explicit geometric
cues for COLMAP-based reconstruction. In contrast, mung-
bean canopies were smaller and more compact, introduc-
ing greater self-occlusion and reducing the effectiveness of
aerial viewpoints, as visible in the drone-based mungbean
model (Fig. 2 b).

The 360° camera produced the lowest geometric fidelity
for both crops (Fig. 2 c,f), largely due to the sky and soil
dominating the equirectangular frames, motion-induced vi-
brations during maneuvering, and the limited robustness of
COLMAP for spherical imagery. Because no frame selec-
tion or additional filtering was applied, these distortions led
to noisier reconstructions and loss of fine canopy structure,
consistent with the lower precision, recall, and F1 scores
reported in Table 2. These trends are further supported by
the 2D appearance metrics in Table 3, where the hand-
held iPhone consistently achieves the highest PSNR and
SSIM, and the lowest LPIPS, reinforcing its role as the
pseudo—ground truth reference.

These results reflect the capture geometry and imaging

Device Crop PSNR SSIM LPIPS
Soy 18.07 0.157 0.526

Drone  yrung 20.80 0.239 0570

Soy 17.02 0482 0.590
Insta360 \rne 2502 0747 0281
oro Soy 2166 0542 0243

Mung 21.00 0.520 0.198

Table 3: 2D appearance evaluation across devices using
PSNR, SSIM, and LPIPS. Higher PSNR and SSIM, along
with lower LPIPS, indicate better visual fidelity.

conditions of each device. The drone’s stable circular tra-
jectory yields consistent baselines and strong global struc-
ture for both crops (Fig. 2 b,e). The handheld iPhone cap-
tures, collected at close range with high image overlap,
preserve the highest level of fine-scale detail (Fig. 2 a,d),
which explains their superior performance across both geo-
metric metrics (Table 2) and appearance metrics (Table 3).
The 360° camera operates close to the ground but does not
provide meaningful under-canopy coverage at this growth
stage; instead, its horizontal viewpoint combined with spher-
ical distortion and motion blur limits its geometric complete-
ness (Fig. 2 c,f). Overall, the results indicate that drone im-
agery is most reliable for structured plot-level reconstruc-
tion, with the iPhone providing the highest detail and stabil-
ity. The 360° camera can serve as an auxiliary viewpoint but
requires improved preprocessing to achieve consistent re-



sults. The comparisons in Fig. 2 a—f, together with the quan-
titative summaries in Tables 2-3, highlight clear differences
in completeness, noise characteristics, and detail retention
across devices.

Conclusions and Future Work

This study systematically compared NeRF-based 3D plant
reconstructions across three imaging platforms under
matched field conditions. We quantified the platform-
specific strengths and limitations for field phenotyping ap-
plications by evaluating both geometric accuracy and pho-
tometric fidelity across soybean and mungbean plots. Our
results reveal distinct tradeoffs across platforms. Drone im-
agery produced the most geometrically consistent recon-
structions, achieving the highest precision, recall, and F1
scores due to stable orbital trajectories and comprehensive
plot-level coverage. This geometric reliability makes drone-
based acquisition well-suited for measuring canopy struc-
ture and spatial plant arrangement. Handheld iPhone cap-
tures delivered superior photometric quality, with the high-
est PSNR and SSIM values and lowest perceptual error
(LPIPS), reflecting the benefits of close-range imaging with
controlled viewpoints and minimal motion blur. The 360°
ground camera, while providing complementary low-angle
perspectives, exhibited reduced fidelity in both geometric
and visual metrics due to spherical distortion, sky-soil im-
balance in equirectangular frames, and motion artifacts dur-
ing maneuvering.

These findings provide practical guidance for platform se-
lection in agricultural NeRF workflows. For applications re-
quiring accurate spatial measurements and plot-scale cover-
age, such as canopy height estimation or plant spacing anal-
ysis, drone-based acquisition offers the most reliable perfor-
mance. For tasks demanding high visual fidelity or detailed
plant-level feature extraction, handheld devices provide su-
perior image quality at the cost of reduced spatial coverage.
Ground-based 360° cameras may serve as auxiliary view-
points but require improved preprocessing and capture pro-
tocols to achieve comparable reconstruction quality.

Several limitations warrant consideration. Our evaluation
was conducted on small experimental plots with two crop
species at specific growth stages. Reconstruction perfor-
mance may vary with canopy density, plant height, and phe-
nological stage. The use of handheld iPhone captures as a
pseudo-ground truth, while practical in the absence of Li-
DAR scans, introduces potential reference bias. Addition-
ally, the 360° camera dataset lacked systematic frame se-
lection and preprocessing, which may have contributed to
its lower performance. Future work will address these lim-
itations through several extensions. First, we will scale the
evaluation to larger field plots with diverse crop types and
canopy architectures to assess generalization across agri-
cultural contexts. Second, incorporating GPS metadata for
drone and 360° imagery will improve camera initialization
and cross-platform spatial alignment. Finally, exploring hy-
brid capture strategies that combine drone coverage with tar-
geted handheld close-ups may leverage the complementary
strengths of each platform.

Overall, this work establishes drone-based imaging as a
reliable foundation for field-scale NeRF reconstruction, with
demonstrated advantages in geometric consistency and op-
erational scalability. As NeRF methods continue to mature
and computational costs decrease, multi-platform 3D recon-
struction workflows offer promising pathways toward high-
throughput phenotyping systems capable of capturing both
plot-level spatial patterns and plant-level morphological de-
tail in operational agricultural settings.
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